Math 255A Lecture 20 Notes

Daniel Raban

November 14, 2018

1 Analytic Fredholm Theory

1.1 Analytic Fredholm theory

Theorem 1.1 (analytic Fredholm theory). Let $\Omega \subseteq \mathbb{C}$ be open and connected, and let $T(z) \in \mathcal{L}(B_1, B_2)$ for $z \in \Omega$ be a family for Fredholm operators depending holomorphically on z; that is $T: z \mapsto T(z)$ is holomorphic with respect to the operator norm on $L(B_1, B_2)$. Assume that there exists $z_0 \in \Omega$ such that $T(z_0) : B_1 \to B_2$ is invertible. Then there exists a set $\Sigma \subseteq \Omega$ having no limit point in Ω such that for all $z \in \Omega \setminus \Sigma$, the operator $T(z): B_1 \to B_2$ is is bijective.

Proof. Notice that $z \mapsto \operatorname{ind}(T(z))$ is constant, so $\operatorname{ind}(T(z)) = \operatorname{ind}(T(z_0)) = 0$ for all $z \in \Omega$. Let $z_1 \in \Omega$, and write $n_0(z_1) = \dim(\ker(T(z_1))) = \dim(\operatorname{coker}(T(z_1)))$. Consider the Grushin operator for $T(z_1)$:

$$\mathcal{P}^{z_1} = \begin{bmatrix} T(z_1) & R_-(z_1) \\ R_+(z_1) & 0 \end{bmatrix} : B_1 \oplus \mathbb{C}^{n_0(z_1)} \to B_2 \oplus \mathbb{C}^{n_0(z_1)},$$

which is invertible. There exists a connected open neighborhood $N(z_1) \subseteq \Omega$ of z_1 such that for $z \in N(z_1)$, the operator

$$\mathcal{P}^{z_1}(z) = \begin{bmatrix} T(z) & R_-(z_1) \\ R_+(z_1) & 0 \end{bmatrix}$$

is bijective and depends holomorphically on $z \in N(z_1)$.

Let

$$\mathcal{E}^{z_1}(z) = (\mathcal{P}^{z_1}(z))^{-1} = \begin{bmatrix} E(z) & E_+(z) \\ E_-(z) & E_{-+}(z) \end{bmatrix}$$

be the inverse of $\mathcal{P}^{z_1}(z)$, depending holomorphically on $z \in N(z_1)$. We claim that for $z \in N(z_1)$, we have $T(z) : B_1 \to B_2$ is bijective if and only if $E_{-+}(z) : \mathbb{C}^{n_0(z_1)} \to \mathbb{C}^{n_0(z_1)}$ is bijective.

$$\begin{bmatrix} T & R_{-} \\ R_{+} & 0 \end{bmatrix} \begin{bmatrix} E & E_{+} \\ E_{-} & E_{-+} \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix},$$

so we get $TE + R_-E_- = I$ and $TE_+ + E_-E_{-+}$. If E_{-+}^{-1} exists, then $TE_+E_{-+}^{-1} = R_-$, so $T(E - E_+E_{-+}^{-1}E_-) = I$. Thus, T is surjective, so because T is Fredholm of index 0, T is bijective, and $T^{-1} = E - E_+E_{-+}^{-1}E_-$. The converse is checked similarly.

 E_{-+} is a holomorphic function with values in $n_0(z_1) \times n_0(z_1)$ matrices. So it is bijective iff det $(E_{-+}) \neq 0$. We have that either det $(E_{-+}(z)) = 0$ on $N(z_1)$ or det $(E_{-+}) \neq 0$ in a deleted neighborhood of z_1 . Let $\Omega_1 = \{z \in \Omega : T(z') \text{ is invertible } \forall z' \neq z \text{ near } z\}$, and let $\Omega_2 = \{z \in \Omega : T(z') \text{ is not invertible } \forall z' \neq z \text{ near } z\}$. Then $\Omega = \Omega_1 \cup \Omega_2$, where Ω_1, Ω_2 are open. $\Omega_1 \neq \emptyset$, so $\Omega_2 = \emptyset$, and thus the set $\Sigma = \{z \in \Omega : T(z) \text{ is not invertible}\}$ is a closed set with only isolated points. \Box

1.2 Behavior of inverses near singularities

Remark 1.1. We have $z \mapsto T(z)^{-1}$ is holomorphic on $\Omega \setminus \Sigma$. Consider the behavior of $T(z)^{-1}$ near $w \in \Sigma$. Write $T(z)^{-1} = E(z) - E_+(z)E_{-+}^{-1}(z)E_-(z)$. Then $E_{-+}(z)^{-1}$ has a pole at z = w (because we are dividing by the determinant, which may has zeros of at most finite multiplicity), so

$$E_{-+}(z)^{-1} = \frac{R_{N_0}}{(z-w)^{N_0}} + \dots + \frac{R_{-1}}{z-w} + \text{Hol}(z)$$

Here, rank $(R_j) \leq n_0$. It follows that $z \mapsto T(z)^{-1}$ has a pole of order N_0 at z = w:

$$T(z)^{-1}(z) = \frac{A_{-N_0}}{(z-w)^{N_0}} + \dots + \frac{A_{-1}}{(z-w)} + Q(z).$$

where Q(z) is holomorphic in a neighborhood of w and takes values in $\mathcal{L}(B_2, B_1)$. The operators $A_{-N_0}, \ldots, A_{-1} \in \mathcal{L}(B_2, B_1)$ can be expressed in terms of R_{-N_0}, \ldots, R_{-1} and $E_+^{(j)}(w)$ and are of finite rank.

Definition 1.1. The spectrum of $T: B_1 \to B_2$ is

 $\operatorname{Spec}(T) = \{ z \in \mathbb{C} : T - zI \text{ is not invertible} \}.$

Analytic Fredholm theory shows that if T is Fredholm, then Spec(T) consists of isolated points.